Studi Invitro dan Insilico Efektivitas Antibakteri Kunyit Putih Terhadap Hambatan Pertumbuhan Escherichia Coli
Downloads
Latar Belakang: Escherichia coli telah diamati sebagai salah satu bakteri penyebab resistensi antibiotik. Pasien ISK di India Selatan dilaporkan menunjukkan peningkatan resistensi terhadap ciprofloxacin. Senyawa bioaktif diperlukan sebagai kandidat antibiotik untuk mengendalikan infeksi bakteri. Curcuma zedoaria atau kunyit putih sebagai antimikroba terutama terhadap E. coli. Aktivitas antibakteri pada dinding sel paling sering digunakan sebagai agen bakterisida. Enzim penting untuk biosintesis peptidoglikan pada dinding sel bakteri adalah protein muramyl ligase E (MurE) (entri PDB: 7B9E) dan Gyrase B (entri PDB: 4ZVI), berpotensi sebagai target pengikatan dengan metabolit sekunder curcumenol dan germacrone dengan in silico (molecular docking). Tujuan: Penelitian ini bertujuan untuk melihat efektivitas ekstrak etanol kunyit putih dibandingkan antibiotik dalam menghambat pertumbuhan E. coli secara in vitro dan in silico. Metode: 5 kelompok yang digunakan, yaitu ekstrak kunyit putih konsentrasi 15%, 20% dan 25%, kelompok kontrol positif dengan pemberian ciprofloxacin dan negatif yang diberikan aquades. Metode yang digunakan adalah mengukur diameter zona hambat dan daya bunuh (jumlah koloni) E. coli dan uji in silico yang dilakukan pada software PyRx. Hasil : penelitian menunjukkan ekstrak kunyit putih konsentrasi 25% mempunyai zona hambat yang sangat kuat dengan diameter hambatan 36,2 mm, sedangkan kunyit putih tidak mempunyai daya membunuh pada konsentrasi 10, 15 dan 25%. Afinitas pengikatan terendah untuk protein MurE adalah germacrone, sedangkan untuk pengikatan DNA girase B adalah curcumenol. Kesimpulan: Kunyit putih mempunyai potensi sebagai antibakteri dan diduga ligan curcumenol dan germacrone dapat menghambat aktivitas protein MurE dan DNA Gyrase B.
Downloads
Shrestha A, Shrestha R, Koju P, Tamrakar S, Rai A, Shrestha P, et al. The Resistance Patterns in E. coli Isolates among Apparently Healthy Adults and Local Drivers of Antimicrobial Resistance: A Mixed-Methods Study in a Suburban Area of Nepal. Trop Med Infect Dis. 2022;7(7).
Nurjanah GS, Cahyadi AI, Windria S. Escherichia Coli Resistance To Various Kinds of Antibiotics in Animals and Humans: a Literature Study. Indones Med Veterinus. 2020;9(6):970–83.
Barlaam A, Parisi A, Spinelli E, Caruso M, Taranto PDI, Normanno G. Global Emergence of Colistin-Resistant Escherichia coli in Food Chains and Associated Food Safety Implications : A Review. J Food Prot [Internet]. 2019;82(8):1440–8. Available from: https://doi.org/ 10.4315/0362-028X.JFP-19-116
Eltai NO, Yassine HM, Al Thani AA, Abu Madi MA, Ismail A, Ibrahim E, et al. Prevalence of antibiotic resistant Escherichia coli isolates from fecal samples of food handlers in Qatar. Antimicrob Resist Infect Control. 2018;7(1):1–7.
Montes-yedra J, Bautista-avenda AA, Garcı ES. Virulence genes , antimicrobial resistance profile , phylotyping and pathotyping of diarrheagenic Escherichia coli isolated from children in Southwest Mexico. 2024;1–23.
Rostinawati T. Pola Resistensi Antibiotik Bakteri Penyebab Infeksi Saluran Kemih di Puskesmas Ibrahim Adjie Kota Bandung. J Sains Farm Klin. 2021;8(1):27.
Puspandari N, Sunarno S, Febrianti T, Febriyana D, Dian R, Rooslamiati I, et al. Extended spectrum beta-lactamase-producing Escherichia coli surveillance in the human , food chain , and environment sectors : Tricycle project ( pilot ) in Indonesia. 2021;13.
Gharge S, Hiremath SI, Kagawad P, Jivaje K, Palled MS, Suryawanshi SS. Curcuma zedoaria Rosc (Zingiberaceae): a review on its chemical, pharmacological and biological activities. Futur J Pharm Sci. 2021;7(1):1–9.
Indriani V, Chiuman L, Wijaya LL, Lister G, Grandis L. Antibacterial Effect of Curcuma zedoaria Extract on Bacillus cereus and Staphylococcus epidermidis. Althea Med J. 2020;7(1):6–10.
Miah MAS, Yeasmin T, Islam F, Yeasmin S. Antimicrobial , membrane stabilizing and thrombolytic activities of ethanolic extract of Curcuma zedoaria Rosc . Rhizome. J Pharmacogn Phytochem. 2017;6 (5)(October 2018):38–41.
Dwi Puspita S, Yulianti R, Mozartha M. The effectiveness of white turmeric (Curcuma zedoaria) extracts as root canal irrigation alternative material on Streptococcus viridans. J Phys Conf Ser. 2019;1246(1).
Alves MJ, Froufe HJC, Costa AFT, Santos AF, Oliveira LG, Osório SRM, et al. Docking studies in target proteins involved in antibacterial action mechanisms: Extending the knowledge on standard antibiotics to antimicrobial mushroom compounds. Molecules. 2014;19(2):1672–84.
Saqallah FG, Hamed WM, Talib WH, Dianita R, Wahab HA. Antimicrobial activity and molecular docking screening of bioactive components of Antirrhinum majus (snapdragon) aerial parts. Heliyon [Internet]. 2022;8(8):e10391. Available from: https://doi.org/10. 1016/j.heliyon.2022.e10391
Yuan C, Hao X. Heliyon Antibacterial mechanism of action and in silico molecular docking studies of Cupressus funebris essential oil against drug resistant bacterial strains. Heliyon [Internet]. 2023;9(8):e18742. Available from: https://doi.org/10.1016/j.heliyon.2023.e18742.
Kanter J, Untu S. Uji Aktivitas Antibakteri Ekstrak Kulit Buah Tanaman Jengkol Pithecellobium jiringa Terhadap Pertumbuhan Bakteri Staphylococcus aureus dan Pseudomonas aeruginosa. Biofarmasetikal Trop. 2019;2(2):170–9.
Kowalska-krochmal B, Dudek-wicher R. The Minimum Inhibitory Concentration of Antibiotics : Methods , Interpretation , Clinical Relevance. 2021.
Kuspradini H, Putri AS, Egra S, Yanti. Short communication: In vitro antibacterial activity of essential oils from twelve aromatic plants from East Kalimantan, Indonesia. Biodiversitas. 2019;20(7):2039–42.
Abbott IJ, van Gorp E, Cottingham H, Macesic N, Wallis SC, Roberts JA, et al. Oral ciprofloxacin activity against ceftriaxone-resistant Escherichia coli in an in vitro bladder infection model. J Antimicrob Chemother [Internet]. 2023;78(2):397–410. Available from: https://doi.org/10.1093/jac/dkac402
Ganur ANA, Rahayu DUC, Dianhar H, Irwanto I, Sugita P. Terpenoid from Indonesian Temu Mangga ( Curcuma mangga , Val ) Rhizomes and Review of Its Anticancer Towards MCF-7 Breast Cells. 4th International Swminar on Chemistry. https://doi.org/ 10.1063/5.00515 (June 2021):1–8.
Ode DS, Dwi AS, Gustin S, Dyah CR, Hanhan D, Purwantiningsih S. Secondary metabolite isolated from Indonesian white turmeric ( Curcuma zedoaria ) rhizomes and its potential as antibacterial agent. 2022;11(1):28–32.
Rahayu WP, Nurjanah S, Komalasari E. Escherichia coli: Patogenitas,Analisis, dan Kajian Risiko. J Chem Inf Model. 2018;53(9):5.
Wu J, Feng Y, Han C, Huang W, Shen Z, Yang M, et al. Germacrone derivatives: Synthesis, biological activity, molecular docking studies and molecular dynamics simulations. Oncotarget. 2017;8(9):15149–58.
Putri R, Mursiti S, Sumarni W. Aktivitas Antibakteri Kombinasi Temu Putih dan Temulawak terhadap Streptococcus Mutans. J MIPA [Internet]. 2017;40(1):43–7. Available from: http://journal.unnes. ac.id/nju/index.php/JM
Garoff L, Huseby DL, Praski Alzrigat L, Hughes D. Effect of aminoacyl-TRNA synthetase mutations on susceptibility to ciprofloxacin in Escherichia coli. J Antimicrob Chemother. 2018;73(12):3285–92.
Abishad P, Niveditha P, Unni V, Vergis J, Kurkure NV, Chaudhari S, et al. In silico molecular docking and in vitro antimicrobial efficacy of phytochemicals against multi-drug-resistant enteroaggregative Escherichia coli and non-typhoidal Salmonella spp. Gut Pathog [Internet]. 2021;13(1):1–11. Available from: https://doi.org/10.1186/s13099-021-00443-3.
Daoui O, Elkhattabi S, Chtita S, Elkhalabi R, Zgou H, Benjelloun AT. QSAR, molecular docking and ADMET properties in silico studies of novel 4,5,6,7-tetrahydrobenzo[D] -thiazol-2-Yl derivatives derived from dimedone as potent anti-tumor agents through inhibition of C-Met receptor tyrosine kinase. Heliyon [Internet]. 2021;7(7):e07463. Available from: https://doi.org/ 10.1016/j.heliyon.2021.e07463
Novianty R. Analisis Farmakokinetik, Toksisitas dan Drug-Likeness Lima Senyawa Aktif Biji Pinang Sebagai Antidepresan secara In Silico. Jurnal Inovasi Pendidikan dan Sains. 2023;4(1):61-66
Diyah NW, Ghifari AS, Hidayati SW, Ekowati J. In silico Study on Physicochemical, Pharmacokinetic and Toxicity Profiles of Available Antiviral Drugs and The Drug-Target Interaction with Protease of SARS-CoV-2 Studi In Silico Profil Fisikokimia, Farmakokinetik dan Toksisitas Obat Antivirus yang Bereda. Camellia. 2022;1(2):38–47.
Hartati FK, Djauhari AB, Viol Dhea K. Evaluation of pharmacokinetic properties, toxicity, and bioactive cytotoxic activity of black rice (Oryza sativa l.) as candidates for diabetes mellitus drugs by in silico. Biointerface Res Appl Chem. 2021;11(4):12301–11.
Sattari A, Ramazani A, Aghahosseini H. Repositioning therapeutics for COVID-19: virtual screening of the potent synthetic and natural compounds as SARS-CoV-2 3CLpro inhibitors. J Iran Chem Soc [Internet]. 2021;18(10):2807–27. Available from: https://doi.org/10.1007/ s13738-021-02235-7
Guryanova S V., Khaitov RM. Strategies for Using Muramyl Peptides - Modulators of Innate Immunity of Bacterial Origin - in Medicine. Front Immunol. 2021;12(April).
Wysocka M, Dzierzbicka K, Krawczyk B. Evaluating the antibacterial activity of muramyl dipeptide derivatives, retro-tuftsin derivatives, and anthraquinone oligopeptides against a range of pathogenic bacteria*. Acta Biochim Pol. 2021;68(3):449–55.
Jianu C, Stoin D, Cocan I, David I, Pop G et al. In Silico and In Vitro Evaluation of The Antimicrobial and Antioxidant Potential of Mentha x Smithiana R> Graham Essential Oil from Western Romania. Foods. 2021,10, 815:1-17.
Copyright (c) 2024 The Indonesian Journal of Infectious Diseases
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.