POTENSI PELUANG DEMAM BERDARAH DENGUE (DBD) BERDASARKAN PROYEKSI PERUBAHAN IKLIM (STUDY KASUS : DKI JAKARTA)

Dede Tarmana

Abstract


Abstrak :Pengaruh perubahan iklim terhadap demam berdarah dengue (DBD) bersifat tidak langsung. Hal ini karena terdapat faktor perantara penyebab yaitu nyamuk Aedes Aegypti. Perkembangbiakan dan siklus hidup nyamuk Aedes Aegypti inilah yang dipengaruhi langsung oleh kondisi iklim. Kesesuaian iklim dengan lingkungan hidup nyamuk aedes Aegypti ditandai dengan temperatur hangat dan curah hujan tinggi seperti Indonesia. Tujuan dari penelitian ini yaitu untuk mengetahui proyeksi peluang DBD secara rata-rata untuk periode 2014-2038 berdasarkan proyeksi curah hujan dan temperatur. Metode statistik yang digunakan untuk mengetahui pengaruh iklim terhadap kesehatan (demam berdarah) antara lain statistik downscaling, analisis komponen utama, dan regresi logistik ordinal. Hasil analisis menunjukan bahwa curah hujan yang sesuai dengan demam berdarah berkisar 100-300 mm. Untuk curah hujan relatif tinggi 120 – 317 mm yang terjadi pada bulan Januari-Februari, ancaman paling kuat adalah bahaya banjir dan DBD. Untuk temperatur udara, proyeksi ke depan (2014-2038) berkisar antara 26 – 30 oC, kondisi ini masih optimal untuk perkembangan nyamuk Aedes Aegypti. Proyeksi peluang demam berdarah berdasarkan proyeksi curah hujan dan temperatur menunjukan wilayah Jakarta masih berpeluang tinggi sebagai wilayah katagori resiko tinggi demam berdarah dengan nilai peluang 0,74 – 0,99.

 

Abstract : Influence of climate change to Dengue hermologic fever(DHF) has indirect characteristic. There are other factor as medium DHF case, that is aedes Aegypti mosquito. Life cycle and breeding of aedes Aegypti mosquito has direct contact with climate condition. Suitability between climate and life environment of aedes Aegypti mosquito marked with warm temperature and heavy rainfall like Indonesia. The purpose of this study to know projection of DHF average probability period 2013-2038 base on rainfall and temperature projection. Statistical method, such as downscalling statistic, principal component analysis and ordinal logistic regression was applied to know impact of climate on health (dengue cases). Result of analysis shows suitability between rainfall with DHF case is 100-300 mm. January-February has heavy rainfall 120 – 317mm, so needed attention more and more stressing about flood disaster and DHF case. In the period of 2014-2038, interval temperatur occurred between 26 – 30 oC. The interval temperature like this is optimal condition for Aedes Aegypti breeding. The result of probability projection shows that Jakarta is still the region for high risk DHF, with probability value 0,74 – 0,99.


Keywords


Perubahan iklim, Demam berdarah, Logistik ordinal,Climate change, Dengue hermologic fever, Ordinal logistic, Probability. Peluang

Full Text:

PDF

References


IPCC working group II. 2007. Regional Vulnerable Impacts, adaptation and Vulneability. IPCC fourth assessment reports. 2. Aldrian E.,Karmini M., Budiman. 2011. Adaptasi dan Mitigasi Perubahan Iklim di Indonesia. Jakarta : Pusat Perubahan Iklim dan Kualitas Udara BMKG. 3. BMKG Reports. 2010. Seasonal Prediction : Wet and Dry Season Prediction. Jakarta : Pusat Iklim Agriklimat dan Iklim Maritim BMKG. 4. Hales, S., Edwards, S.J., Kovats, R.S., 2003. Impacts on Health of climate Change. Geneva : WHO-WMO-UNEP. 5. Githeko, A. Dan Woodward, A., 2003. International Concensus on The Science of Climate Change. The IPCC Third Assessment Report. 6. WMO dan WHO, 2012. Atlas of Health and Climate : Realizing the Potential to Improve Health Outcomes Through the Use of Climate Services. Switzerland :WHO Press 7. Tarmana, D., 2011. Potential Impact of Climate Change on Dengue Hermologic Fever (DHF) Disease in Indonesia. South Korea : Annual APCC Report 2012. 8. Team Bulletin data surveilance, 2010. Window of Epidemologi : Dengue Fever Cases. Jakarta : Ministry of Health. 9. Tarmana, D., dan Nuraidi, 2010. Identifikasi Potensi Dampak Perubahan Iklim terhadap Kesehatan (DBD) di Jakarta. Thesis : Institut Pertanian Bogor. 10. T.W. Anderson, 1984. An Introduction to Multivariate Statistical Analysis. Second Edition. John Wiley & Sons. 11. Wigena, A.H., 2006. Pemodelan Statistical Downscaling dengan Regresi Projection Pursuit untuk Peramalan Curah Hujan Bulanan. Disertasi . IPB

M. J. Greenacre, 1993. Correspondence Analysis in Practice. Academic Press, Harcourt, Brace & Company. 13. Agresti and Allan, 1996. An Introduction to Categorical Data Analysis. New York: John Wiley and Sons 14. Hosmer, D.W. and S. Lemeshow, 1989. Applied Logistic Regression. New York: John Wiley and Sons.

Kaiser, H.F., 1970. A Second Generation Little Jiffy. Psychometrika, 35, 401-405.

Kelley, T.L., 1942. The reliability coefficient. Psychometrika, 7, 75-85.

Linacre, J.M., 2008. Winsteps Rasch measurement (Version 3.63.2). Chicago, IL: MESA Press. 18. BMKG-ICCTF Reports, 2011. Public Awareness, Training And Education Programme on Climate Change Issue for All Level of Societies, Mitigation and Adaptation. Jakarta-Indonesia

Ditjen P2PL, 2008. Impact of Global Warming, Dengue cases Increase. Jakarta : Tempo Interaktif 13 April 2008 20. Tarmana, D., And Aldrian, E., 2010. Vulnerability Maps of Dengue Hermologic Fever (DHF) in Jakarta. Jakarta :Joint Cooperation BMKG with Ministry of Health.




DOI: https://doi.org/10.32667/ijid.v1i2.8

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

The Indonesian Journal of Infectious Disese (IJID) has been covered by these following indexing services.

 Google Scholar  Mendeley

 


Secretariat Address :

Research Instalation

Sulianti Saroso Infectious Disease Hospital

Jl. Baru Sunter Permai Raya, Jakarta Utara 143040

Telp : (021) 6506559  ext 3119

www. ijid-rspisuliantisaroso.co.id

Email : jurnal@ijid-rspisuliantisaroso.co.id